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PROJETO INVERSO DE BOCAIS EM ESCOAMENTO COMPRESSIVEL

autor: LUIS FILIPE VON RAINER FABIANI
orientador: Prof. Dr. ERNANI VITILLO VOLPE

RESUMO

Métodos numéricos séo de grande importédncia na engenharia, e um engenheiro que uss-
los devers entendé-los e saber escolher o melhor método para uma determinada aplicagéo.
Este trabalho visa a implantacio de um método numérico para a resolucéo das equacdes de
Euler em um perfil de um bocal, para o escoamento compressivel e quasi-unidimensional.
O problema estudado nesse trabatho, um bocal com geometria axisimétrica, submetido
a um escoamento de um fluido compressivel sem viscosidade, térmica e caloricamente
perfeito, é de relativa simplicidade. Porém, justamente por sua simplicidade, ele é ideal

para o aprendizado de métodos para a resolugéo do escoamento compressivel,



Capitulo 1

Introducao

A Dindmica dos Fluidos apresenta intimeros casos de interesse pratico na engenha-
ria, que compreendem desde os sistemas mais simples de ventilacio até os mais
complexos projetos de aerodindmica e hidrodindmica.

Devido a esta imensa diversidade de aplicagdes seus problemas sempre foram
objeto de intensa investigagéo, tanto através da abordagem experimental, onde se
realizam ensaios em tiineis de vento e dgua, quanto através da abordagem tedrica,
onde se procura obter solugSes para os modelos mateméticos que descrevem o esco-
amento.

Na abordagem teérica, formulam-se modelos com base nos principios de con-
servacdo de massa, quantidade de movimento e energia. Entretanto, na Dindmica
dos Fluidos, esses principios assumem a forma de equagdes diferenciais parciais ndo
lineares, para as quais néo se conhecem soluges analiticas gerais. Ao contrario, as
solugbes analiticas sdo conhecidas apenas para uma colecfio restrita de problemas,
que compreendern uma pequena parte da vasta gama de problemas e aplicacdes de
interesse pratico.

Tais condicdes favoreceram o desenvolvimento de técnicas de simulagio numérica,
como alternativa natural aos métodos analiticos, para a obtencdo de solucdes apro-

ximadas. Tais técnicas constituem-se nos dias de hoje em uma linha de pesquisa



denominada Dindmica dos Fluidos Computacional (CFD*).

O aparecimento de computadores e o aumento da sua capacidade de proces-
samento ao longo dos tltimos 30 anos proporcionou um grande impulso a essa,
tendéncia, e atualmente hd métodos numéricos extremamente robustos, que sio
capazes de gerar solugles aproximadas confidveis para uma imensa variedade de
problemas.

Na realidade, os métodos numéricos tornaram-se uma ferramenta de uso comum
no dia-a~dia dos escritérios de engenharia, permitindo a simulacdo de diversas al-
ternativas para o problema em questdio num curto espago de tempo e com custos
bastante menores se comparados aqueles necessdrios para a realizaciio dos ensaios
correspondentes.

Entretanto vale ressaltar que tanto a simula¢éo computacional quanto os ensaios
em tuneis de vento apresentam limitagdes, que os tornam processos complementares.
Os tineis de vento sio limitados pelo elevado custo necessério para a preparacio dos
modelos. A simulacio computaciona) é limitada, pelo dificuldade no desenvolvimento
de algoritmos que atendam 3s reais condi¢des do problema. Desta forma a simulacédo
computacional é usualmente utilizada para restringir o ndmero de ensaios a serem
realizados nos tineis de vento, reduzindo com isso o tempo e o custo requeridos na
obtengdo da melhor solucio.

Deve-se acrescentar que o uso adequado e eficiente da CFD depende em grande
medida do conhecimento que o usudrio tenha dos métodos envolvidos. Uma vez que
por melhores que sejam, esses programas néo sdo infaliveis, e ndo h4 um método
universalmente aceito em todas as aplicagdes. Cabe ao engenheiro, portanto, a
escolha do método mais adequado & cada aplicagio considerada. Fica assim evidente
a necessidade desse profissional ter um conhecimento bésico desses métodos.

O objetivo deste trabalho é a implantagio de um método para resolver numeri-
camente as equagdes de Euler no espaco quasi-unidimensional, e com os resultados

obtidos nessa etapa compara-los com os resultados de um software comercial. Este

*Sigla em inglés — Computational Fluid Dynamics



projeto € o primeiro passo de um esforco para desenvolver na EPUSP uma linha
de pesquisa focada no projeto inverso acrodindmico. Pretende-se com ele langar as
bases para desenvolvimentos futuros em projeto de superficies aerodinamicas como

asas.



Capitulo 2

Fundamentacao Tedrica

2.1 Equagdes de Navier-Stokes

O estudo de um problema da Dindmica dos Fluidos utilizando a CFD é realizado
através da soluciio das equagoes que governam o escoamento, ou seja, as equacdes
de Conservacio da Massa, Quantidade de Movimento e Energia (2.1). A equagao
de conservagio da Quantidade de Movimento para Auidos Newtonianos-Stokesianos
dé-se o nome de equacio Navier-Stokes (N.S.). Entretanto, na 4rea aeroespacial
costuma-se chamar de Navier-Stokes o sistema completo (2.1), que também inclui

as equagoes da continuidade e energia. No presente trabalho essa designagio serd

adotada.
]I)ﬁ = ~pV.¥
D: P T+ pg =

Be = Vg-pvair:vays

onde o operador diferencial:

D) o), .
ﬁ-*—ét——FU.V()

representa a derivada total ou substantiva. Nesta formulagdo, p é a densidade, p a

press&o, ¥ a velocidade | € a energia interna especifica e §'é a transferéncia de calor.



No caso do escoamento compressivel, esse sistema é acrescido de uma, equagdo de

estado, usualmente a equagio dos gases perfeitos.

p=p(p,¢)

Para. os estudos desenvolvidos neste trabalho, € conveniente escrever as equagdes
(2.1) na forma de um divergente no dominio espaco tempo. No caso bi-dimensional,

essa forma. é respresentada. por:

ou 9F oG
5 o[- o + i 0 (2.2)
onde as varidveis U, F e G séo:
P
v=| ™ (2.3)
pv
¢ |
B = :
2
PUV + Tys
| (et om)ut Typv— Kk |

ov

G PUY + Ty (2.5)
pv? + oy '

] (e+oy)v+ Tmyu-—kgy—T |

As varidveis e, o, o, Tey € Tyz lepresentam:



21,2
¢ ezpﬁ‘l'w
=p— )\( +ay)—2p,g—;

— — Su o
| = te=—n(E+5)

onde e a energia total por unidade de volume, i e A sfo o primeiro e o segundo

(2.6)

coeficientes de viscosidade, k é a condutibilidade térmica, e T é a temperatura.

A forma divergente da equagfo de Navier-Stokes (2.2) e a forma convencional
(2.1) séo fisicamente equivalentes. Porém do ponto de vista dos métodos numéricos
essas formas tém propriedades diferentes. A vantagem em se utilizar a forma di-
vergente é apontada por R. MacCormack em [4]. Na literatura a forma divergente
também é conhecida como forma conservativa, em virtude de sua relacio com flu-
xos das quantidades de interesse através da fronteira de um volume de controle,

como pode ser visto na aplicagio do teorema de Gauss ao teorema do transporte de

% _ f/ 3("‘” dV+/fp¢ﬁﬁdS
[l

2.2 Equacoes de Euler

Reynolds:

As equagBes de Euler representam uma simplificagio importante das equacdes de
Navier-Stokes (2.1). Elas governam o escoamento de um fliido térmica e calorica-
mente perfeito, cuja viscosidade e condutibilidade térmica sio ambas zero [4]. E
evidente que tal fluido nfo existe na natureza. Entretanto essa simplificaciio é ade-
quada para escoamentos onde os efeitos de viscosidade e conducio de calor néo séo
importantes (4). Toda uma classe de escoamentos governados pela presséo em ae-
rodindmica inclui-se nesse grupo. A forma geral das equagdes de Euler corresponde

a:



%f = —pV. i

%—f =—=Vp+pg (2:8)
]]%—; = —pV.id+ p§

As varidveis mostradas acima sio as mesmas descritas para as equagbes de
Navier-Stokes (2.1). Na forma conservativa, para o caso bi-dimensional, o sistema

de equacdes assume a seguinte forma:

UL OF 3G

bl 2.9
o oz gy ° 29)
sendo que os vetores I/, F e (3 agora representam
p
v= | (2.10)
pv
I €=
. B
pu
2
oo TP (2.11)
puv
| (e+p)u |
- B
pv
v
¢ =1 ~ (2.12)
pv? +p
| (e+p)v |

Como descrito em [10], a simulagdo numérica do escoamento implica na solucéo
das equagdes que o governam, por um método numérico. Este método corresponde

a formulacio de aproximagoes para as equacdes do modelo, e um algoritmo para

7



resolvé-las. Nesse caso, o programa de computador resolverd numericamente um
sistema formado pelas equacoes de Euler: A equagio da conservagio do momento,
da continuidade, da energia, assim como equagtes de estado, com a implantacio do
método de volumes finitos, ou MVF.

O principio bésico do MVF consiste em dividir o dominio do escoamento num
conjunto de Volumes de Controle e aplicar as equagdes de balango a cada um desses

Volumes de Controle, usando para isso o teorema do transporte de Reynolds (2.7).

2.3 Condicgoes de Contorno

Para se resolver uma ODE, sdo necessdrias condigdes iniciais ¢ também condicdes
de contorno. As condigBes iniciais sio muito importantes, e devem ser escolhidas
com cuidado, j& que podem acelerar a convergéncia da solucio quando escolhidas
corretamente, e por outro lado hé casos nos quais ela pode causar a divergéncia da
solugdo, quando escolhida erroneamente. Utilizando-se uma condigio de contorno
do tipo partida (4.2.2}, pode-se observar o regime transitério até o boeal atingir o
regime permanente, e os resultados foram satisfatérios.

J4 as condigbes de contorno sfio as condicdes do escoamento, as quais a geome-
tria do bocal esté sujeita. A Termodindmica do Escoamento Compressivel explica
que as quantidades fisicas do fluido se propagam com a velocidade de um pulso de
pressao, ou seja, com a velocidade do som no meio. H4 trés tipos de velocidades que
governam a propagacao das informacses, u, u + ¢ e u — ¢, as chamadas velocidades
caracteristicas. Em um escoamento subsénico (Ma < 1), as caracteristicas do esco-
amento se propagam em todas as direcOes, j4 que a velocidade caracteristica u — ¢
tem sinal contrdrio as demais, enquanto que para o caso supersdnico (Ma > 1) elas
se propagam na direcdo do escoamento (todas as velocidades caracteristicas tém o
mesmo sinal). Portanto, é necessdrio distinguir essas duas situagdes e agir de acordo
com cada caso.

Para ilustrar melhor o problema, considere um bocal quasi-1D, convergente-



divergente, como mostra a figura 2.1.

u linha
i sbnicg
{ plano :

i de simetna

(g  rreemmmanen

fo—g); -

Figura 2.1: Velocidades caracteristicas de um bocal convergente-convergente

O escoamento se torna supersénico apés a linha sénica, que ocorre na garganta
do bocal. A inclinagdo das velocidades caracteristicas nas fronteiras do volume de
controle indicam como o escoamento influi sobre elas e, portanto, mostram que certos
graus de liberdade sfo necessérios quando se especifica as condigdes de contorno,

para nao deixar as propriedades sobre-especificadas.



Capitulo 3

Implementacio Numérica

3.1 Caso Quasi-Unidimensional

Para um escoamento quasi-unidimensional, é admitido que a variacdo da geometria
é suave o bastante para que a componente vertical da velocidade seja. desprezivel,
frente & componente paralela ao eixo das abscissas. Tome-se & figura abaixo, repre-

sentando uma passagem genérica S (z).

v A Pdx
oy
- ]
P&y /_} S'dx
dx
S(z

1

i ]

o

1 I

| ﬁ?"" Volume de controle

]

b

o

1 [

) 1

T T T T T T e T e e e -
Plano de simetria et B s . X

Figura 3.1: Geometria arbitrdria e um volume de controle

As forgas agindo no volume de controle, Pdx e ij—sd:c sdo tais que a primeira é
cancelada por simetria, e a segunda quando integrada fornece o empuxo no bocal.

Os vetores U (2.10) e F (2.11) assumem a seguinte forma:

10



W

U = pou (3.1)
[

Fo= 1 pl+p (3:2)
| (e+P)u

O balanco de massa, momento e energia na superficie do volume de controle

(Figura 3.1) é dado por:

S{z+Ax)
5 p pu
3 pu | SAz| + |8 pu? - p +
€ (et+p)u 4+ Az

S(x)

pu 0

-[s| m24p =1 p¥ | Az (3.3)
(e+pu 0

Dividindo a equaggo (3.3) por Az, levando ao limite para Az — 0, e introduzino os

vetores 3.1 e 3.2,
0 (SU) n O(SF)
Ot or

onde o termo néo homogéneo é dado por:

Q (3.4)

ds
Q=—

Assim a equagfo principal é dada por:

o(U) 18(SF)
5 T =@ (3.5)

11



Esta equagiio é um equagéio diferencial parcial (PDE), e precisa ser resolvida por
um método numeérico, ja que a solu¢do analitica é restrita a poucos casos. O MVF
utilizado na resolugéio desta equagéo pertence a uma classe chamada de Split Fluzes,

ou seja, o fluxo dado por

18(SF)
S Oz
é dividido em duas partes. Pode-se escrever F' como [4]
oF _ oFaU
ox  OU Oz
definindo
OF
A — W
prova-se que:
F=AU

A equacio 3.5 pode ser reescrita como:

oUu 1 oUS
N EA (83: = @ (3:6)
e a matriz A, o Jacobiano do Fluxo, é dada por:
[ 0 1 0 ]
A= (=-3% @G- (-1 (37)
G- W " |

Para as equagdes de Euler, esta matriz apresenta todos os auto-valores reais. Assim,

ela pode ser diagonalizada pela seguinte trasnformacio de similaridade;
A= S871CTMA4C48

e estas matrizes sdo dadas por:

12



— —1 1 -1 __
aff —uf B8 o  pu ’;
N L 5z 5»
Ca= {0 pe 1 Cil=10 .
0 —pc 1 o 3 1
onde
u?
(]!:—2'-
g = (v-1)

Ainda, a matriz diagonal com os autovalores de A é dada por:
U 0 0
Ay = 0 (u + C) 0
0 0 (u—c)
Os valores da diagonal principal sio as velocidades caracterfsticas definidas anteri-

ormente (Figura 2.1). Entéo, os Split Fluzes sio definidos por:

F+ el A+U
Fo= AU

Ay = STOTALCaS
Al = A-— A+ = A_ = S"ICEIAA_CAS

Ay, & definido como sendo a matriz diagonal contendo somente os autovalo-
res positivos de A. Por outro lado, A4_ é definido como sendo a matriz diagonal
que contém somente os autovalores negativos de A. Esses autovalores positivos e

negativos podem ser separados por uma das formas a seguir:

13
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|

2
=|A
2

= Ata/A24¢2
- 2
L A=/ X242

2

/\+:l+|A
Ao =2

ou

esta tltima formulagéo é utilizada para evitar instabilidades numéricas no curso em
que A — 0. Os valores adotados para ¢ séo da ordem de 1073, ou de um modo geral,

¢ <1

Aplicando essas definigdes &s equacdo (3.6), obtemos:

oU  18(FyS) 19(F_S)
o t5 ar TS5 6w @ (3:8)
Para a resolugfo desta nova ODE, sio utilizados trés métodos numéricos, Steger-

Warming, Modified Steger- Warming e Roe Fluz Difference Vector Spliting.

3.1.1 Método Steger-Warming

Pelo método Steger- Warming (SW), o vetor de fluxo é separado de acordo com os
sinais das velocidades caracteristicas do escoamento (u, u+ ce u—¢). Por exemplo,
s¢ um escoamento subsénico se move na mesma direciio do eixo das abcissas, u e
u + ¢ serdo positivos e u — ¢ serd negativo. Este método consegue aplicar diferen-
tes esquemas de interpolagio {upwind ou downwind), para as diferentes porgdes do
dominio, de uma maneira mais eficiente, dependendo da, diregdo das informacdes e
das velocidades caracteristicas.

Deste modo, a equagdo (3.8) é aproximada da seguinte maneira:

At
n+1 n Fn
v v (AxS) ¥ [ it

na qual:
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e também:

[
A

dS {91 —Sicz
dr Az

By = Fp + Flgay = ALUR + A%, U,

1
L

Fr L= F"(,-) + Flaoyy = AZUT + AL Ul

i —

A figura 3.2 ilustra melhor os fluxos de informagéio nas fronteiras do volume de

controle:

I T
1 i
1 !
Fi— (i-1) : F_ @ F+ (z!: I (é-+1)

0 ! o | 0

i—1 : i : t+1
: :
I i
i—3 i+l

Figura 3.2: Fluxos de informagdo nas fronteiras do volume de controle

3.1.2 Meétodo Steger-Warming Modificado

O método Steger-Warming, apesar de poderoso, apresenta uma grande dissipacio
numérica, o que pode aumentar o ndmero de iteracdes necessarias para a con-

vergéncia do problema, ou pior causar problemas com a exatidao da solucio uma,
b b 7

15



vez que a dissipagio numérica suaviza os gradientes. Assim, modificacdes a esse
método foram propostas, como mostrado a seguir.
No método Steger-Warming modificado (MSW), os vetores de fluxo sdo calcula-

dos de maneira diferente:;

Fiiy Ff(z+ y Ty = Alan U + A ) Ul
1.—-) + F’n A-l—('a—l)U ‘I‘ A_(,l____)U

na qual os jacobianos A sdo calculados utilizando uma média entre as grandezas nos
pontos da malha préximos & superficies na qual o fluxo ird ser aproximado:

A +(:+}) = Propriedades obtidas de Uan = %

2
Xi(i_ 1y = Propriedades obtidas de U,_ 1= U"“2+U‘

Caso seja necessério introduzir mais dissipagio numérica, o fluxo computado pelo

método original é composto com o método modificado. Isto é feito através de um

peso (wy):
P, = —Ltm—h
ik min (F;, Pia)
1
Wel = T-FP—;-_H
it
e

z—i—% i+ %
Apesar de um comprometimento da qualidade do resultado, como dito anterior-
mente, é obtida uma solugéio aproximada, o que pode ser muito interessante, dados

0s curtos prazos que se dispdes hoje em dia para concluir uma anslise.

16



3.1.3 Método Roe da Separacio da Diferenca do Vetor de
Fluxo

Neste método, a matriz do jacobiano do fluxo é calculada na. interface do volume de

controle, utilizando uma média geométrica:

ﬁi+% = VPi*pPin
. VPi Wi T /Pit1 Uit
Uit l

VPi + A/Pix1

. 1 € -I-R-) (€£+1 +-P'i+1)}
by = == v (22 4 o (St
* m—+\/mf{ w( A

Estas grandezas sdo utilizadas para se calcular fi,-, +1- Ainda, o método Roe

separa a diferenca do vetor de fluxo, ¢ ndo o vetor de fluxo em si. Assim, esses s8o

dados por:
Fyi= F—%J‘r# = % Ay 1| Ui — i)
onde
A=A, — A_

Este método, por apresentar muito poucas dissipagdo numérica, pode posicionar
ondas de choque em lugares onde néo seria possivel, como por exemplo numa ocasido
que violaria a segunda lei da termodinfmica [9]. H4 simulagdes nas quais a onda
de choque ocorrem em lugares que nio sio possiveis de acordo com a segunda lei
da termodindmica. Portanto, uma correcio na entropia se faz necesséria, para que
sempre haja um aumento de entropia e néo o contrdrio. Sendo :\% +1 um autovalor

de A‘H—%:

posy
+
b=
Il
)
+
L
ng>
+
I
+
O
+
I~
o]
=
:-:c)
+
(ST
[
-
[

onde

) ; 1y,
G+ = \/("Y —1) (hi+% D) (uz2+51))
Sendo A; e A;4q os valores deste autovalor nos pontos 7 e i + 1, e também definindo

€1 COmMO

vy = max {0, A — A din = Aoy
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B Aoi
5 {2z .
< €41, entdo A, 1< 35 ( o t € ) Os detalhes desta for

Assim, se lAi +1

mulacdo estdo em [4].

3.2 Condic¢oes de Contorno

De acordo com (4], quatro propriedades termodinamicas devem ser especificadas
para a resolugfo das equacdes de Euler no caso bi-dimensional, ou trés propriedades
para o caso quasi-unidimensional. As velocidades caracteristicas do escoamento de-
terminam o nimero ¢ o tipo de condigdes de contorno que precisam ser especificadas
(2.3). A tabela 3.1 mostra as quantidades a serem especificadas sobre a informagcéo
externa ao escoamento e o nimero de caracterfsticas a serem resolvidas tanto na

entrada quanto na saida.

Quantidades Caracterfsticas
a serem especificadas a serem resolvidas
Entrada Subsénica  p, T} 1 —(u—c¢
Supersénica.  todas 0 — nenhuma
Saida Subsbnica  p, 2> u,(ute
Supersbnica. nenhuma 3 — todas

Tabela 3.1: Condicdes de contorno

Os indices ¢ e e referem-se &s propriesdades de estagnacdo ¢ estitica, respectiva-

mente.

3.2.1 Condigées de Contorno da Entrada

Caso a entrada seja subsdnica, as quantidades fisicas mudam de acordo com o esco-

amento, e precisam ser calculadas da seguinte forma:

~\y
1— X

R= (P2 — Py — pe(ug ~ uy)]

18



onde os indices 1 e 2 dizem respeito aos pontos da malha na entrada e imediatamente

apos a ela, respectivamente, e

At
/\4:(u—c)5
Ainda,
R
op _ [ 4 {1_('\/—1)@*—115 _2(7—1)_u_)
ou — N-D (rna (v+1)a?
2 _ 2 2 (v — 1)Md?
o, = ('y—l—l)c 1+ 5
2
. b = N NG
= Tt[l (7—1)a3J
T(u)] 72
Pw) = £[
e finalmente
uptt = P sy

Prtl = p(uph)
Tin-i‘l — T(u'ia+1)

as outras quantidades fisicas séio calculadas isentropicamente.

3.2.2 Condigoes de Contorno da Saida

Como mencionado anteriormente, caso o escoamento seja supersénico na saida, as
quantidades fisicas sdo calculadas conforme os outros pontos do dominio. Caso

contrério, as seguintes equacdes sio utilizadas:

—A; 1
Rl - m lipn_pn—l'cE(Pn_Pn_]-):l

R2 ey —_—2'- [PN _— .PN_] + pc (UN - uN—l)]

Ry = ESW] [Py — Pn_1 — pe(uy — un_1)]



onde

St

Az

Ap = (u+c)§5
Ay = (U—C)%

e os indices N e N — 1 sio referentes aos pontos da malha na saida e imediatamente

antes dela, respectivamente. Portanto,

El;gj—il se MaN_1 >1

op =
0 se May_y <1, assumindo que Ql—’g’gﬂ =0
(5[) == Rl + %212
J’U, . (RQ—JP!
T pe
e ainda,
uptt = w4+ u

PRl — progp
Pt = ph+ép

as outras quantidades fisicas s80 calculadag isoentropicamente,

3.3 Comparacao dos Métodos Utilizados

Em todos os casos, o incremento do tempo, At é dado por

At = min { ———CFL Am}
lu| + ¢
A condicio de Courant-Friedrich-Levy (CFL) se faz necesséria, dada a formulagéo
explcitia. Assim, CFL = 0.9 e At é calculado a cada iteracio. De modo geral,
CFL < 1.
Utilizando a mesma geometria e condi¢es iniciais apresentadas na secdo 4.2.2,

obtém-se os resultados apresentados na tabela a seguir.
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Método Numero de iteragdes Tempo da simulagio (s)

Steger-Warming 3326 3.633
Steger-Warming Modificado 3143 3.433
Roe 3304 3.601

Tabela 3.2: Métodos de simulagio

O tempo da simulagéo é dado por tempo = tempo + At, para cada iteracio.
Assim, é possivel observar que para uma tolerancia de 1074, os diferente métodos
apresentam um numero diferente de iteragSes para se chegar na convergéncia, bem
como o tempo da simulagdo. Ainda, o método Steger-Warming Modificado é o que
apresenta o menor numero de iteragGes, e portanto é o método mais eficiente para

um bocal convergente-divergente.
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Capitulo 4
Resultados

4.1 Simplificacio

A utilizagsio de softwares comerciais é de muita importéncia para a validacio dos
resultados obtidos j& que esses sfo exaustivamente testados por profissionais da 4rea
e usudrios do mundo inteiro. O software FLUENT foi escolhido pelo aluno devido
a sua fécil utilizacio e disponibilidade no departamento de engenharia mecanica.

Primeiro, um bocal convergente-divergente foi construida em trés dimensdes,
como mostrado na figura 4.1. Os pardmetros de simulacdo foram Deptreds = 28200,
€ Psaida = 017a, sendo Pompiente = 100.000Pa. Deste modo, o bocal encontra-se
blocado (nimero de Mach igual a 1 na garganta), como é observado na figura 4.4.

E observada também urna onda de choque, e seus efeitos no escoamento como
recuperacdo da pressdo (Figura 4.5) e da densidade (Figura 4.8) e diminuicdo da
velocidade (Figura 4.2). Outros efeitos interessantes sio a presenga de velocidades
nulas préximas A parede, devido ao principio da aderéncia completa e o descolamento
da camanda limite.

Comparando-se as figuras (4.2 a 4.9) com as figuras (4.10 a 4.15), os resulta-
dos s&o compativeis com uma simplificagdo do modelo, considerando o escoamento
como sendo axisimétrico e resolvendo apenas uma, se¢io do dominio, considerando-o
bidimensional.

Nesse caso, é observado um leve descolamento da, camada limite préximo & pa-
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Grid Nov 12, 2003
FILUENT 6.0 (3d, segregated, ske)

Figura 4.1: Geometria e malha

3.5%e+02
l....
2.88s+02
2.520+02
2.166+02
1.80e402

1.440+02

1.08e+02
7.19e+01

2.539+01 I—
P4

0.00e+00

Gontours of Velocity Magnitude (m/s) Nov 12, 2003
FLUENT 6.0 (3d, segregated, ske)

Figura 4.2: Corte de um plano mostrando os contornos de velocidade

rede, bem como velocidade zero préximo a ela.

O préximo teste a ser efetuado é o da hipétese de que o fluido é termica e
caloricamente perfeito. Para isso, uma simulacdo utilizando um fluido inviscido e um
fluido com a turbuléncia simulada pelo modelo k-¢. Os resultados para o escoamento

inviscido séo mostrados adiante. O modelo do escoamento, para um fluido sern
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3.619+02
! 3.27e+02
294e+02
2.80e+02
2.28e8+02
1.92e+02

1.58e+02

1.250402
9.07e+01

5.89e+01
L

2.31e+01

2, 2003

Velocity Vectors Colored By Veloci Magnitude (m/s! Nov 12,
B  Meg i FLUENT 6.0 (3d, segregated, ske)

Figura 4.3: Corte de um planc mostrando os vetores de velocidade

1.17a+0(
g 1.088+0(¢
8.508-01
8.4%0-01
7.30e-01
6.20a-01
5.108-01

4.00a-01

2.90e-01

1.81e-01
L

7.07e-02

Contours of Mach Number Nov 12, 2003
FLUENT 6.0 (34, segregatad, ske)

Figura 4.4: Corte de um plano mostrando o contorno do nimero de Mach

viscosidade, ndo apresenta descolamento nem velocidades nulas na parede (superficie
da geometria), como visto anteriormente. Pode-se observar que o modelo usado no
software comereial nio resolve a onda de choque como uma, discontinuidade, mas
em alguns pontos da geometria, mesmo comportamento apresentado pelo software

de simulacdo utilizado pelo aluno. Este resultado era esperado, e é explicado em

24



1.13e+05
l 1.07e+05
9.972+04
8.2%a+04
8.61e+04

7.93e+04

6.58a+04
5.908+04
5.22e+04

4.59e+04 z X

Gontours of Absclute Pressure (pascal) Nov 12, 2003
FLUENT 6.0 (3d, segregated, ske)

Figura 4.5: Contorno de presséo

1.43e+05
' 1.07e+05

9.976+04
9.298+04

| 8.81e+04

5.22e404 I_
X%

4.54¢+04

12, 2003

Gontours of Absolute Pressure {pascal) Nov 12,
FLUENT 6.0 (3d, segregated, ske)

Figura 4.6: Corte mostrando o contorno de presséo

5. Na figura 4.20, é possivel notar que a temperatura nio varia muito, comparanda,

com as outras quantidades fisicas.
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2550402

248e+02

2.429+02 I
X

2350402
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Contours of Static Temperature (k) Nov 18,
FLUENT 6.0 (3d, segregated, ske)

Figura 4.7: Corte mostrando o contorno de temperatura
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Conteurs of Density (kg/m3) Nov 12, 2003
FLUENT 6.0 (3d, segregated, ske)

Figura 4.8: Contorno de densidade
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Figura 4.9: Corte mostrando o contorno de densidade
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Velocity Vectors Colored By Velocity Magnitude (m/s)

QOct 07, 2003
FLUENT 6.0 (2d, segregated, ske)

Figura 4.10: Vetores de velocidades - Bidimensional
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Contours of Velocity Magnitude (m/s) Oct 07, 2003
FLUENT 6.0 (2d, segregated, ske)

Figura 4.11: Campo de velocidades - Bidimensional
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Contours of Mach Number Oct 07, 2003
FLUENT 6.0 (2d, segregated, ske)

Figura 4.12: Nimero de Mach - Bidimensional
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Figura 4.13: Campo de presséo - Bidimensional
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Figura 4.14: Campo de temperatura - Bidimensional
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Figura 4.15: Campo de densidade - Bidimensional
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Figura 4.16: Vetores de velocidades - Bidimensional
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Figura 4.17: Campo de velocidades - Bidimensional
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Figura 4.18: Niumero de Mach - Bidimensional
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Contours of Absolute Pressure {pascaf)

QOct 07, 2003
FLUENT 6.0 (2d, segregated)

Figura 4.19: Campo de pressdo - Bidimensional
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Figura 4.20: Campo de temperatura - Bidimensional
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Figura 4.21: Campo de densidade - Bidimensional
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Como é possivel observar pelas figuras (4.10 a 4.21), a diferenca entre um es-
comento inviscido e viscoso n&o é muito significante, para esta magnitude de ve-
locidade, pois a camada limite ndo descola da parede. Assim, pode-se modelar o
escoamento como inviscido sem acarretar em grandes erros. A hipitese a ser testada
a seguir ¢ a de escoamento unidimensional. Como mostrado nas figuras 4.22 e 4.23,
a variagdo da componente vertical da velocidade & desprezivel, frente & componente

paralela ao eixo das abscissas:

. 5.548+01
4.620+01
3.708+01
2.78e+01
1.85a+01
9.280+00

6.080-02

-9.17e+0C

-1.849+01

-2.788+1

-3,690+01

Contows of Y Velocity (m/s) Oct 07, 2003
FLUENT 6.0 (2d, sagregated, ske)

Figura 4.22: a variacdo de Uy, escoamento viscoso

Entdo, é possivel modelar o escoamento como sendo unidimensional inviscido,
como segue. A qualidade da solugio ndo foi muito prejudicada, ji que os resultados
s&o muito parecidos com os do caso bidimensional e viscoso.

A tabela 4.1 mostra a comparagao entre os 4 casos simulados acima. B claro que
com os computadores que se dispdes hoje em dia esses valores de tamanho da malha
n&o tem muito impacto no desempenho da méquina, porém com a introdugéo de
mais pardmetros, como combustio e radiacéo, essas simplificacdes podem se tornar
muito Uteis, j& que o prazo para se fazer a anslise de um problema nao é muito

grande, necessitando de resultados confidveis, e em pouco tempo.
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Figura 4.23: Esta figura mostra a variacio de v,, escoamento viscoso
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Figura 4.24: Esta figura mostra os vetores de velocidades - Quasi-unidimensional

4.2 Validacao

4.2.1 Anadlise Integral

Um dos aspectos mais importantes relacionadas com a CFD diz respeito a realizahbi-

lidade das solugdes. As tinicas solucGes que interessam s&0 as que representam esco-
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Figura 4.25: Esta figura mostra o campo de velocidades - Quasi-unidimensional
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Contours of Mach Number Oct 07, 2003
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Figura 4.26: Esta figura mostra o ntimero de Mach - Quasi-unidimensional

amentos reais, isto é, que satisfazem os principios fundamentais da termodinamica
¢ da dinémica dos fluidos. Conforme as simulagbes néo sdo livres de erros, convém
sempre verificar sua consisténcia com relagio a esses principios, através da andlise
integral. No caso presente, foi verificada a conservagio da massa para o regime

permanente, apresentada na fig. 4.30 e a conservacéo da energia, representada pela
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Contours of Absolute Pressure {pascat) Oct 07,
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Figura 4.27: Esta figura mostra o campo de pressdo - Quasi-unidimensional
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Figura 4.28: Esta figura mostra o campo de temperatura - Quasi~unidimensional

conservagio da entalpia de estagnacdo (fig. 4.30). A figura 4.30 mostra os resultados
do balngo de massa e energia para um resuitado de uma, simulagfo, utilizando o soft-
ware do aluno. Pode se notar nessa figura, que tanto a conservaciio da massa como
a entalpia de estagnagio apresentam um erro maior na posigio da onda de choque.

Entretanto esse comportamento era, esperado, pois estd relacionado ao fenémeno
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Figura 4.29: Esta figura mostra o campo de densidade - Quasi-unidimensional

Caso Tamanho da Malha (kb) Namero de nés Tempo de simulagio (min)
3D 3317 42662 il

2D k-¢ 171 2060 2

2D 171 2060 1.3

Quasi-1D 27 200 0.8

Tabela 4.1: Impactos da simplificagio do modelo

conhecido como shock smearing [4].

Outra andlise importante é a conservacio da quantidade de movimento. Essa é

feita através da comparagho da integracio da pressdo em todo o dominio, € compa-

rando o resultado com a aplicagiio do teorema do transporte de Reynolds (2.7) para

a quantidade de movimento.

na qual os

Empuro =mpx (V, —V.) + P.x S, — P, % 8, (4.1)

indices s e e dizem respeito A saida e entrada, respectivamente,

Comparando-se os resultados na tabela 4.2, pode-se concluir que o erro é da
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Figura 4.30: Estas figuras mostram o fluxo de massa e a entalpia de estagnacao-

Software do aluno

Método Empuxo

Integragdo da Pressao | 0.13734
Equagéo 4.1 0.13715

Tabela 4.2: Conservacio da Quantidade de Movimento

ordem de 107, enquanto que a precisfio especificada nessa simulagdo é da ordem
de 1073, O empuxo foi apresentado aqui sem uma unidade correspondente, ja que
como as grandezas envolvidas no problema sao adimensionalisadas, o empuxo em si
também se torna adimensional.

Assim, conclui-se a andlise integral, e nos trés critérios (Conservagio da Massa,

Energia e Quantidade de Movimento) os resultados foram satisfatérios.
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4.2.2 Simulacao

Como exemplo pratico da aplicagiio de simulaciic numérica do escoamento com-
pressivel, vamos considerar um bocal com a geometria indicada na figura 4.31, a
mesma apresentada anteriormente (Figuras 4.24 a 4.29), onde o eixo das abscissas
¢ um eixo de simetria. e esse é submetido a uma condiciio de partida, i.e., presséo,
temperatura e densidade uniformes*, velocidade e niimero de Mach iguais a zero em
todo o dominio do escoamento. Na se¢io de entrada, empoe-se Mach igual 0.6. O
escoamento é considerado quasi-unidimensional (quasi-1D), ou seja, admite-se que
a geometria é suave o bastante para que as velocidades perpendiculares ao eixo de
simetria sejam desprezfveis com relagdo as velocidades paralelas ao eixo. Este caso
foi simulado com um programa feito na linguagem C pelo aluno, desenvolvido no
ambito deste trabalho.

A apresentagdo dos resultados foi feita utilizando o Matlab. As figuras 4.31-4.30
mostram a evolugio do escoamento, da condigéo inicial ao regime permanente. Em
todas as figuras, a condigfio inicial ¢ indicada por trisngulos azuis, e a condigo
de regime permanente é representada por linhas vermelhas. Alguns resultados séo
mostrados para o regime transitério, e eles sio representados por linhas nas cores
azul claro, rosa e verde, que indicam a passagem do tempo. A figura 4.31 mostra a
geometria do bocal e o perfil do niimero de Mach do escoamento.

Pode-se notar na fig. 4.31, que na solugdo para o regime permanente o niimero
de Mach € 1 na garganta, que é o resultado previsto pela Termodinimica do Escoa-
mento Compressivel. Além disso, verifica-se que o escoamento subsénico é acelerado
pela por¢io convergente do bocal, torna-se sénico na garganta, e por isso continua
a ser acelerado na porgfo divergente. Apds a onda de choque, torna-se subsénico e,
portanto, passa a ser desacelerado. Esses resultados também confirmam o compor-
tamento previsto na teoria.,

A figura 4.32 mostra os perfis de pressdo e velocidade, os perfis de temperatura

*Todas as grandezas séo adimensionalizadas

40



0.3 T I I I T T L) I T

0.25

0.16

01 1 L 1 [ ] I
"o : ! ) ; I

Figura 4.31: Estas figuras mostram a geometria e a variacio do niimero de Mach

e densidade s@o apresentados na figura 4.33 abaixo.

Pegando como referéncia a pressdo ambiente de p = 100.000Pa, a densidade
do ar & 20°C nessa pressdo, p = 1.178%5— e também uma velocidade de referéncia
u = 2202, pode-se efetuar a comparacio dos resultados simulados com o software
comercial FLUENT e o software de simulacéo utilizado nesse projeto.

Como as grandezas utilizadas no software de simulagio sdo adimensionalizadas,
é possivel perceber que os valores mostrados nas figuras 4.31 & 4.30 sdo aproxi-
madamente iguais aos apresentados nas figuras 4.24 a 4.29 acima, indicando que
a simulacfo do escoamento com o software de simulacio estd compativel com o
software comercial.

Isto somente néo é o bastante para comprovar que a simulagio est4 correta, j4 que
os software comerciais apresentam solu¢Ges numéricas que nem sempre representam
a realidade, e a qualidade do resultado depende muito do usudrio. Um meio eficaz

de se comprovar a qualidade de uma solugdo é o balango de massa (equaciio da
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Pressure Variation

Figura 4.32: Estas figuras mostram as variagdes da pressdo e da velocidade

continuidade) e conservacho de energia, e os resultados de ambas as simulagdes sao
compativeis.

Portanto, as hipéteses adotadas na simulagéio de um bocal neste trabalho séo ver-
dadeiras, ou seja, escoamento quasi-unidimensional e fluido termica e caloricamente

perfeito.
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Figura 4.33: Estas figuras mostram a variagéo da temperatura e da densidade
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Capitulo 5

Simulacoes

Bocais propulsores de foguetes e motores de avides a jato sdo utilizados para se obter
velocidades grandes na saida, &s vezes maiores do que a velocidade do som, para
obter maiores empuxos. Por outro lado, bocais podem tirar proveito do efeito de
blocagem, para se obter um meio de regular a vazéo.

A figura 5.1 mostra as condigdes de operagdo possiveis, para um bocal conver-

gente - divergente (figura 2.1) e entrada subsonica.

1

1

2' L
I 1
B 1
1
1

Primeira critica

Nio iscentrépico
(#7713

Terceira critica

X
Entrada Garganta Saida

Figura 5.1: Condigdes de operagéio de um bocal convergente-divergente

Conforme [9], Partindo-se de uma presséo na saida igual & presséo de entrada no
bocal, ndo hé escoamento. Diminuindo-se a presséo & jusante, o escoamento inicia
no regime subsénico, e acelera da entrada para a garganta, atingindo a velocidade
méxima nessa secio, e desacelera novamente. O bocal atua como um difusor e a

presséo na safda, Py, é igual & pressdo a jusante. Além do mais, o escoamento através
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de toda a extensdo do bocal é regido pelo valor da pressdo & Jjusante.

Esta situacéo é mantida, até que a pressio 3 Jjusante atinge o valor £ £, COITESpON-
dente & operacdo denominada de primeira criftica. Entéo, a ve1001dade na garganta,
atinge a velocidade do som (Ma; = Ma* = 1), e as condigBes nessa secdo sdo
chamadas de criticas (4, = A3)!, porém o escoamento na saida ainda & subsénico.
Esta ¢ a condi¢do limite para a consigio de um difusor subsnico. Nesta condicdo
a garganta é dita blocada, e as conficdes do escoamento na por¢ao convergente do
bocal séo fixas, e ndo mundam com a diminuicéo da pressio & jusante. E importante
notar que a partir desse ponto a vazio méssica & fixa, e representa o maior valor
possivelf,

Em dltima anslise, uma onda de choque é uma descontinuidade e pode ser con-
siderada. infinitesimal, j4 que o tamanho real é de alguns caminhos livres médios**,
E importante observar que esta é a razio da oscilagiio nos gréficos de vazio maéssica
dos bocais que apresentam uma onda, de choque. Como essa onda é uma, descon-
tinuidade, deveria ser modelada em apenas uma célula, porém os métodos nio sio
capazes e espalham a onda em duas ou trés células, ocasionando essa, pequena dis-
crepancia.

Até a condicéio de primeira critica, o escoamento por todo o boeal é isoentrépico.
Porém ao baixar ainda mais g pressao a jusante, além da condigdo de primeira
critica, uma acomodagio terd que acontecer na parte divergente do bocal, pois as
condigdes na parte convergente, até a garganta, sio fixas e ndo se alterardo. Esta
acomodagdo de pressio vem na forma de uma onda de compressio, chamada de onds,
de choque, ¢ a operacdo do bocal nio é mais isoentrépica. Através dessa onda de
choque, o escoamento que era supersénico torna-se subsdnico, com uma recuperacio
de pressao.

Finalmente, quando a pressao a jusante é diminuida até a condigdo de terceira

TA propriedade indicada por * é referente a0 nlimero de Ma = 1
tPara a condigdo de entrada supersénica,
**Um caminho livre média é da ordem de 10~Trm
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eritica ( %‘L = 0.064), nesse €850, 0 escoamento é completamente isoentrépico, e ace-
3

lera de velocidades subsdnicas baixas na entrada, até altas velocidades supersénicas

na saida. Esta Operagdo ndo apresenta uma, onds, de choque, e ¢ a condigdo de

projeto de bocais a propulsao.

méssica fixa.

Levando isso em conta, quatro casos de interesse serdo apresentados e analisa-
dos a seguir. As geometrias utilizadas, bem como as condigdes de contorno sio
apresentadas na tabela 5.1. Em primeiro lugar, uma geometria convergente é sirmy-

lada, obtendo-se os graficos das figuras 5.2 a 9.5, somente para a solucdo de regime

permanente.
'Eocal Geometria uentmdj
1| 8(z) = ~0.125z + 0.25 0.4
2 | 8(z) = 0.125z + 0.125 0.3
3 |8z =22-21035 0.8
4 1 8@ =22—24035 0.3
5 | @) - 0244 (x-02)?2 gez <02 03
02405« (z~ 0.2)%, sez > 0.2
6 | S()— 02+4x(2-02)2 sez<02 -
| 02+40.5%(z~0.2)2 sez>0.9 |

Tabela 5.1: Geometrias e condicdes de contorno para os bocais simulados

E possivel observar que Ma = 1 na saida do bocal, que é g secdo chamada de
garganta, ja que possui a menor area. Como o boca) estd blocado, néo é possivel

aumentar a velocidade de saida ditninuindo a pressio de saida, e o bocal atingiu a
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Figura 5.2: Bocal 1 -Geometria e a variacéo do nimero de Mach

condigiio de méximo empuxo para estas dadas condices.
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Figura 5.3: Bocal 1 - Pressio e Velocidade

O préximo teste é de um bocal com geometria divergente e entrada supersénica.
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Figura 5.5: Bocal 1 - Fluxo de masss e Entalpia de estagnacéo

E observado uma aceleracso do fluido até que uma onda de choque acontece, € a

partir de ento, o escoamento se torna subsénico, e ocorre uma, desaceleracio. Este
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Figura 5.6: Bocal 2 - Geometria e a variacio do nimero de Mach

tipo de bocal n&o é uma boa alternativa ao bocal convergente para se obter maiores
velocidades, pois se a entrada for subsénica, havers apenas uma diminui¢do da velo-
cidade. Se, caso contririo, a entrada for supersdnica, a velocidade de saida poderd
ser maior do que a de entrada, porém obter uma entrada supersonica, atingida pelo
aquecimento do fluido (escoamento de Rayleigh), por exemplo, ndo constitui uma,
boa solugdo j& que em tubulagbes pretende-se obter a menor perda de carga possivel.
Assim, a aceleracio do fluido é preferencialmente feita em curtos €Spagos.

Bocais do tipo convergente-divergente (figuras 5.10 a 5.13) foram desenvolvi-
dos, com o propésito de se aproveitar os gases provenientes da queima de algum
combustivel, que gera altas temperatura e pressao, e expeli-lo através desse bocal.
Assim, consegue-se um fluxo de gés 4 alta velocidade pela saida, aumentando o em-
puxo e melhorando o seu desempenho. Este tipo de bocal é comumente encontrado
em foguetes, aviGes, shuttles ou VLS*.

Obviamente h4 riscos em se utilizar este tipo de bocal, pois se o bocal de pro-

*Veiculo Langador de Satélites
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pulsdo néo for bem projetado, podem ocorrer ondas de choque em seu interior (figu-
ras 5.14 a 5.17), e como a saida se tornars subsdnica, 0 empuxo serd muito diminuido.
Isto emplica em perda de velocidade, ou até mesmo capacidade de sustentacdo da
aeronave.

Para ressaltar como o projeto do bocal é importante, ao observar as figuras
3.18 a 5.25 representando os resultados da sitnulacdo dos bocais 5 e 6, é notada
uma descontinuidade nos gréficos das propriedades, na secio da garganta. Isto é
explicado com uma analogia partindo de um problema chamado paredes rugosas.
Em [6], é mostrado que o coeficiente de presséo varia da seguinte forma, em paredes

rugosas:

Para Ma>1 C,= 2%
o

-2 _d%
Para Ma < 1 C’p—w7r TR

Fazendo uma, analogia, as propriedades termodinimicas também dependem da
derivada de primeira ordem da geometria (%) para escoamento supersénico, e da
derivada de segunda ordem da geometria (%) para o caso subsOnico. Assim, se a
geometria ndo é continua até a segunda derivada, havers descontinuidades como as
apresentadas. Isto é importante, pois os bocais construidos em escala industrial ndo
necessariamente apresentam esta continuidade. A tabela 5.1 mostra a equagao da
geometria S ao longo do comprimento do bocal, e os bocais 5 e 6 nio apresentam

derivadas de segunda ordem continuas.
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Figura 5.10: Bocal 3 - Geometria e a variagio do nidmero de Mach
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Figura 5.12: Bocal 3 - Temperatura e Densidade
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Figura 5.14: Bocal 4 - Geometria e a variacio do nimero de Mach
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Figura 5.17: Bocal 4 - Fluxo de massa e Entalpia de estagnacio
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Figura 5.18: Bocal 5 - Geometria e a variacio do ntimero de Mach
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Pressure Variation

Figura 5.19: Bocal 5 - Pressio e Velocidade

Temperature Yariation

Figura 5.20: Bocal 5 - Temperatura e Densidade

Aplicando-se a equagio 4.1 aos bocais simulados acima, obtém-se tabela 5.2. E

possivel observar que os efeitos de uma onda de choque para um bocal de propulsao
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Figura 5.21: Bocal 5 - Fluxo de massa e Entalpia de estagnagio

podem ser significativos. Na comparagio entre os bocais 3 e 4, o empuxo diminuiu
cerca de 4.5 vezes. J& nos bocais 5 e 6, o empuxo diminuiu cerca de 2 vezes.
Considerando-se um foguete ou um avido, uma diminuicdo desta magnitude poderia

causar graves instabilidades.

Bocal | Empuxo
1 0.191
2 0.074
3 0.746
4 0.163
5

6

0.267
0.123

Tabela 5.2: Empuxo dos bocais
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Figura 5.22: Bocal 6 - Geometria e a variagio do niimero de Mach
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Figura 5.23: Bocal 6 - Pressdo e Velocidade
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Temperature Variation
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Figura 5.25: Bocal 6 - Fluxo de massa e Entalpia de estagnagéo
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Capitulo 6

Conclusao

A familia de métodos utilizada nesse trabalho, chamada de Split Fluzes, é de grande
importéncia para escoamentos compressiveis e velocidades elevadas, pois pode-se,
com ela, verificar o quanto de informagéo é passada e em quais direcdes, decidindo
qual o melhor esquema de interpolacéo.

O problema estudado nesse trabalho, um bocal com geometria axisimétrica,
submetido a um escoamento de um fluido compressivel sem viscosidade, térmica
e caloricamente perfeito, é de relativa simplicidade. Porém, justamente por sua
simplicidade, ele ¢ ideal para o aprendizado de métodos para a resolucio do escoa-
mento compressivel. O uso das equagdes de Euler no aprendizado é importante, pois
partir de um conjunto completo de equacdes como as de Navier-Stokes nao fornece
informagdes detalhadas sobre as contribuicdes individuais dos efeitos no escoamento.

Como foi mostrado na secio 4, no caso de velocidades elevadas para bocais, a
camada limite n&o descola da parede. Assim, os efeitos da viscosidade néo sdo muito
importantes, e o fluido pode ser considerado inviscido. Ainda, o escoamento se mos-
trou axisimétrico, e péde ser simplificado para um problema quasi-unidimensional,
J4 que as variagdes das velocidades no eixo perpendicular ao escoamento sio muito
menores do que as variagGes da velocidade paralela ao escoamento. Fica assim,
validado os resultados produzidos pelo programa do aluno, bem como o modelo
utilizado.

O bom funcionamento de um bocal depende em grande parte de um bom projeto,
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e estes métodos sdo excelentes ferramentas de andlise. Pode-se, por exemplo, calcular
os esforgos que as paredes do bocal vao estar submetidas para manter a estrutura
coesa, 0 empuxo a que ele estard submetido e o regime transitdrio até¢ se obter a
condic¢io de operagio, em regime permanente.

Portanto, é possfvel prever se ondas de choque ocorrerdo dentro do bocal ou nao,
bem como as variacdes das propriedades do fluido, como temperatura, pressao e
densidade. A ocorréncia de ondas de choque, no caso de bocais de propulsdo, pode
ser extremamente perigoso, j& que o empuxo ¢ significativamente diminuido.

Em bocais reguladores de vazdo, por outro lado, este efeito pode ser extrema-
mente 1lti, pois a saida supersonica ndo é desejdvel. A condiciio de blocagem do
bocal é suficiente para seu funcionamento, e velocidades elevadas na saida ocasio-
nariam perdas de carga desnecessarias.

O uso de programas de simulagio computacional produz resultados que depen-
dem muito da maneira com que o usuério faz a montagem do problema. O conhe-
cimento dos métodos envolvidos pode ser de grande ajuda nas simulagdes, j& que
provém o usuério de uma ferramenta poderosa de anélise, pois ndo ha um método
universalmente aceito em todas as situagdes, e os programas de simulagio nao sao
infal{veis. Assim, a escolha do melhor método para o caso estudado ¢ de responsa-

bilidade do engenheiro.
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